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ANALYTIC INVARIANTS AND THE 
SCHWARZ-PICK INEQUALITY 

BY 

L A W R E N C E  A. HARRIS* 

ABSTRACT 

We find numerical analytic invariants distinguishing between the infinite 
dimensional analogues of the classical Caftan domains of different type. 
Further, we define an invariant Hermitian metric on the classical bounded 
symmetric domains and certain infinite dimensional analogues and show that of 
all such metrics this is the only one (up to a constant multiple) which yields the 
best constant in the Schwarz-Pick inequality. 

Our purpose is to show that the infinite dimensional analogues of the classical 

Cartan domains of different types are not holomorphically equivalent and to 

introduce an invariant Hermitian metric on a class of bounded symmetric 

domains in Banach spaces (including all the classical bounded symmetric 

domains) which yields the best constant in the Schwarz-Pick inequality. The 

domains we consider are the open unit balls of spaces of operators called 
J*-algebras. It is shown in [4] that many holomorphic properties of these 

domains can be expressed in terms of the algebraic properties of the associated 

J*-algebra. (See also [9].) For example, two of the domains are holomorphically 
equivalent if and only if their associated J*-algebras have the same J*-structure. 

Thus domains of different type are not holomorphically equivalent except in 

dimensions _-< 6 since the maximum dimension m of the space generated by pairs 

of minimal elements in a J*-algebra depends only on the J*-structure and m has 

different values for domains of different type in dimension >6.  Previous proofs 

of this result given by E. Cartan [1] and K. H. Look [12] are less simple and do 

not apply in infinite dimensions. 

Our Schwarz-Pick inequalities are proved for the open unit balls of J*- 

algebras having finite rank. The rank of a J*-algebra is the maximum number of 
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mutually orthogonal non-zero minimal elements which can be found in the 

J*-algebra and thus depends only on the J*-structure. The rank of a finite 

dimensional J*-algebra agrees with the rank of its open unit ball as a Hermitian 

symmetric space. On each J*-algebra of finite rank r, we define an inner product 

in terms of the minimal elements and show that it induces an invariant 

infinitesimal Hermitian metric on the open unit ball of the ]*-algebra with 

Schwarz constant X/r. We also show that any other infinitesimal metric with 

these properties must be a scalar multiple of ours, contradicting results of K, H. 

Look and A. Kor~inyi for the Bergman metric. Further, we give necessary and 

sufficient conditions for each of Kor~inyi's inequalities to hold for a classical 

bounded symmetric domain and we obtain an expression for the integrated form 

of any invariant infinitesimal Hermitian metric on such a domain. 

Applications of infinite dimensional bounded symmetric domains to 

mathematical physics are given in [20]. 

1. Prel iminary definitions and notation 

Let H and K be complex Hilbert spaces and let ~ ( H ,  K)  denote the Banach 

space of all bounded linear transformations from H to K with the operator 

norm. A J*-algebra is a closed complex subspace 92 of ~ ( H ,  K) such that 

A A * A  E 92 whenever A E 92. If 92 and ~ are J*-algebras, a linear map 

L :  92 ~ ~ is said to be a J*-isomorphism if L is a bounded bijection of 92 onto 

satisfying L ( A A * A ) =  L ( A ) L ( A ) * L ( A )  for all A E 92. (Throughout, unless 

otherwise indicated, the symbols 92 and ~ denote arbitrary J*-algebras.) 

For example, the sets ~ ( H ,  K), {A E ~ ( H ) :  A '  = A} and {A ~ Le(H): A '  = 
- A }, where x ~ ~ is a given conjugation on H and A '  = A *~ for all x ~ H, are 

J*-algebras and are called Caftan [actors type I, II, and III, respectively. Also, 

any closed complex subspace 92 of ~ ( H )  such that both A * E 92 and A 2 E CI 

whenever A E 92, is a J*-algebra and is called a Cartan factor of type IV except 

when dim 92 = 2. The Cartan factor of type I, II or III with dim H = n and 

d i m K  = m is denoted by I(m,n) ,  H(n) or III(n), respectively, and the n- 

dimensional Cartan factor of type IV is denoted by IV(n). 

We say that an operator B E 92 is a minimal element of 92 if for each A E 92 

there is a a E C with B A * B  = AB. We call operators A, B E 92 orthogonal if 

both AB*  = 0  and B * A  =0.  Define an operator (A,B)E(92)  by ( A , B ) C  = 
�89 (AB * C + CB *A ). Then A and B are orthogonal if and only if (A, B ) =  0 by 

[4, p. 18]. 

The open unit ball of 92 is denoted throughout by 920. Note that the open unit 
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balls of the finite dimensional Cartan factors of types I - IV are just the Cartan 

domains of the corresponding types. For each B E 92o, the transformation TB 

defined by 

TB (A ) = ( I  - B B  *)-�89 + B )  (I  + B *A )-1(1 - B *B)~ 

is a biholomorphic mapping of 920 onto itself with TB (0)= B, and 

DT~I(B )A  = (I  - B B  *)-iA (I  - B * B )-~ 

for all A E 92. 

2. Minimal elements and holomorphic equivalence 

PROPOSITION 1. The set of minimal elements of a Caftan factor 92 of 

type I is {yx *: x ~ H, y E K}, 

type II is {x~*: x E H}, 

type III is {xy * - )7~*: x, y ~ H}, 

type IV is {B E 92: B 2 = 0} if dim92 > 1, 

where H and K are the underlying Hilbert spaces for 92. 

PROOF. It is easy to verify that each of the sets given is a set of minimal 

elements of the mentioned Caftan factor. (See, for example, the identities in the 

proof of Lemma 2 below.) Conversely, suppose B is a non-zero minimal element 

of 92. If 92 is type I-III ,  there is an x E H and a y E K with II Y ]1 = 1 and y = Bx. 

If 92 is of type I, then )tB = B(yx* )*B  = y (B * y )*  and evaluating at x, we see 

that A = 1. If 92 is of type II, then AB = B (~x*)*B = y)7* since B '  = B, and 

evaluating at Y, we see that ,k ~ 0. If 92 is of type III, then since B '  = - B ,  we 

have 

and 

B g ~ * B  = ( - B * y ) ( B * ~ ) *  = ( 8 * y ) ~ *  

~ * y  = (B*~)*x = - y * x  = - ~ * y ,  

which implies )~*x = 0. Hence 

; tB  = B ( y x *  - ~ y * ) * B  = y ( B * y ) *  - ( B * y ) y *  

and evaluating at x, we see that )t = 1. If 92 is of type IV and B 2 ~ 0, the identity 

B A  * B  = B ( A  * B  + B A  *) - B 2 A  * = 2(B, A ) B  - (B ,  B * ) A  * 
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shows that 92"_C CB, so dim92 = 1. 

Define a generalized Caftan [actor of type I - IV to be a J*-algebra contained in 

a Cartan factor 92 of the corresponding type and containing all the minimal 

elements of 92. For example, if 92 is a Cartan factor of type I-III ,  then the 

J*-algebra of all compact operators in 92 is a generalized Cartan factor of the 

same type. It follows from Proposition 4 (below) that the generalized Cartan 

factors coincide with the Cartan factors in finite dimensions and that the 

generalized Cartan factors of type IV always coincide with the Cartan factors of 

type IV. 

Given a J*-algebra 92, define m (92) to be the supremum of the dimensions of 

the spaces {B1A *B2 + B2A *BI: A ~ 92}, where B~ and B2 vary over all minimal 

elements of 92. (We allow m (92) = o0). Clearly m (92) = m (~)  whenever 9.1 and 

are J*-isomorphic J*-algebras. 

LEMMA 2. If  92 is a generalized Caftan [actor of 
type I, then m (gJ) = 2 unless dim 92 = 1, 

type II, then m (92)= 1, 

type III, then m (92) = 4 unLss dim 92 < 4, 

type IV, then m (92) = dim 92 - 2 unless dim 92 =< 2. 

PROOF. If 92 is of type I and BI = y~x*, B2 = y2x*, where x~,x2E H and 

y~, y2 E K, then 

BIA *B2 + B2A *B~ = (y2, Axl)y~x* + (y~, Ax2)y2x* 

for all A ~ 92. Hence taking A = y2x* and A = y~x*, we see that m (92) = 2 

unless dimg2 = 1. If 92 is of type II and B1 = x~i*, B2 = x2i*, where x~, x2E H, 

then 

B~A *B2 + B2A *B~ = (x2, As (XlX 2* "~ X2X 1") 

for all A E 92 since A '  = A, so m (92) = 1. If 92 is of type III, define [x, y] = 

xy * - ys * for x, y E H. If A E 92 and x, y, z, w E H, then 

[x, YlA*[z, w] + [z, w]A *[x, y] 

= (z ,  A y ) I x ,  w] - (z, A~)[~, w] + (x, Aw)[z ,  y ]  - (~, Ay) [x ,  •] 

since ( ] ,Ax)  = - (~, A y )  for all x, y E H. If d i m H  => 4, there is an orthonormal 

set {x, y, z, w} of self-conjugate elements of H, and taking A = [x, w], [y, w], 

[z, y], [x, z] in succession, we see that each of these operators lies in the space in 

question. Hence  m (92)= 4. 
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If 9.1 is a Cartan factor of type IV and B1, B2 are minimal elements of 2[, then 

B ~ A  *B2 + B 2 A  *BI = B~(A  *B2 + B 2 A  * ) -  (B~Bz + B 2 B I ) A  * 

+ B 2 ( B I A  * + A *BI) 

= - 2 L ( A  *), 

where L (A) = (Ba, B *)A - (A, B *)B~ - (A, B ~*)B2. Moreover, L (B~) = 

L ( B z ) = O ,  so letting ~ be the range of L, we have d i m ~ < d i m 2 [ - 2  if 

dim 2[ > 2. Let B be a minimal element of 2[ with (B, B) = 1. Then taking B~ = B 

and B2 = B*, we see that S = {B1, B2} is an orthonormal set in 2[ and that L is 

the projection of 2[ onto the orthogonal complement of S, so dim ~ = dim 2[ - 2. 

Hence, m (2[) = dim 2[ - 2. 

Trn~oPa~M 3. The open unit balls o f  two generalized Cartan factors of  different 

type are holomorphically equivalent if  and  only i f  both the generalized Caf tan 

[actors are one dimensional  or the generalized Cartan [actors are one o f  the 

J*-isomorphic pairs {I(1,3), III(3)}, {II(2), IV(3)}, {I(2,2), IV(4)}, or {III(4), 

IV(6)}. 

PROOF. Let 2[ and ~3 be generalized Cartan factors of different type and 

suppose 2[0 and ~0 are holomorphically equivalent. Then by [4, cor. 3], 

m (2[) = m (~3) and dim 2[ = dim ~ .  Hence by the previous lemma, 2[ and ~ are 

either both one dimensional or one of the pairs {II(2), III(3)}, {II(2), IV(3)}, 

{III(3), IV(3)}, {I(1, 3), III(3)}, {I(2, 2), IV(4)}, {I(1, 4), IV(4)}, or {III(4), IV(6)}. 

Let {Uk} 4 be a self-adjoint orthonormal basis for IV(4). Then 

Z3 --  i z 4  - -  Z l  + iz2 

is a J*-isomorphism of IV(4) onto 1(2, 2), and the restriction of this map to the 

first three coordinates gives a J*-isomorphism of IV(3) onto I1(2). Let {U~} 6 be a 

self-adjoint orthonormal basis for IV(6). Then 

z l U l  + �9 �9 " + z~U6--* 

0 z~ + iz2 z3 + iz4 z5 + iz6 

-- Z l -  iz2 0 Z 5 -  iz6 -- Z3 + iz4 

- -  Z 3 - -  i z 4  - -  Z s +  i z 6  0 Z~ - -  iz2 

- -  Z5 -- iz6 Z3 -- iz4 -- Zl "Jr iz2 0 
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is a J*-isomorphism of IV(6) onto III(4). (To verify this, first observe that the 

above matrix is unitary when z l , "  ', z6 are real and z ~ + . . .  + z62= 1.) Also 

0 

[Zl,  Z2, Z3] "- '> - - Z l  

-- Z2 

Zl Z2 

0 z3 

- z 3  0 

is a J*-isomorphism of 1(1,3) onto III(3). Note that {I(1,4), IV(4)} and {I(1,3), 

IV(3)} are not J*-isomorphic pairs since not every element of a Caftan factor of 

type IV of dimension > 1 is minimal. Thus pairs 1, 3 and 6 of our list are not 

J*-isomorphic pairs. 

The holomorphic equivalence of the open unit balls of III(4) and IV(6) was 

discovered by Morita [17] and Look [12]. It was overlooked by E. Cartan [1, p. 

152]. 

3. Finite rank J*-algebras 

We say that a J*-algebra 92 has finite rank if there exists a number n such that 
tr(A *A) has at most n non-zero elements for each A E 92.1. The least such n is 

called the rank of 92 and is denoted by r(92). 

For example, every finite dimensional J*-algebra 92 has finite rank and 

r(92) _-< dim 92. Indeed, given n = dim 92 and A ~92, the operators 

A, A A * A , . . . , A ( A * A ) "  are dependent so there is a polynomial p # 0  of 

degree _-< n with A *Ap (A *A ) = 0, and consequently cr(A *A) contains at most 

n non-zero elements by the spectral mapping theorem. Clearly if 92 = ~(C",  H )  

with d i m H  _-> n or if 92 = II(n), then r(92) = n. Also, if 92 is a Cartan factor of 
type IV, then r(92)= 2 when dim 92 > 1 by [4, (9)]. Thus many infinite dimen- 

sional J*-algebras have finite rank. We shall see shortly that r(92) = [n/2] when 

92 = III(n). 

Our next result is a form of the spectral theorem which, in view of Proposition 

1, contains the normal form for rectangular, symmetric and skew-symmetric 

matrices. (Compare [7], [8], and [15].) 

PROPOSITION 4.. I f  92 has rank n, then for each non-zero A E 92, there exist 

mutually orthogonal non-zero minimal partial isometries V1,'. ", V~, in 92 and 

positive numbers a l , ' . . ,  a~, such that 

(1) A = ~ akVk 
k=l 
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and m <= n. In fact, when (1) holds, a , "  ", am are the non-zero eigenvalues of 

(A  *A )I with possible repetitions. 

We call the numbers a , , . .  ", am the singular values of A. (Note that the 

multiplicities depend on the choice of 92.) 

COROLLARY 5. The rank of 9.1, when finite, is the maximum number of 

mutually orthogonal non-zero minimal partial isometries in 9A. 

COROLLARY 6. I f  92 and ~ are J*-isomorphic, then r(92) = r(~).  I f  92 and f~ 

are J*-subalgebras of a J*-algebra such that each element of 92 is orthogonal to 

each element of f~, then r(92 + ~ )  = r(gl) + r(~).  

To deduce the rank of ~ = III(n), observe that the range of a non-zero 

minimal element of 9d is two dimensional and that the ranges of two orthogonal 

minimal elements of 9.1 are orthogonal. Hence given A ~ 9d, by (1), 2m =< n and 

o ( A * A )  has at most m non-zero elements, so r(9~)=< [n/2]. That equality holds 

can be seen by considering a skew-symmetric n x n matrix whose non-zero 

entries are located along the alternate diagonal. 

PROOF OF PROPOSITION 4 AND ITS COROLLARIES. Let A E 9l and put P - -  

(A *A)I. Then there is a partial isometry W with A -- WP and E = W* W is the 

projection onto the closure of the range of P. (See [3, p. 68].) By hypothesis and 

the spectral theorem, there exist mutually orthogonal non-zero projections 

El , -  �9 ", El such that P = Y/, )tjEj, where A1,- �9 )tt are the non-zero eigenvalues of 

P. Moreover,  for each j, there exists a polynomial q with Ej = Pq(P2). Clearly, 

E E j - - E j E  = Ej, and putting W~ = WE,, we have Wj = A q ( A * A ) E  92. Hence 

W I , . - ' ,  W~ are mutually orthogonal non-zero partial isometries in 9.1 and 

A = El AjWj. 

Let V1, �9 �9 Vm be mutually orthogonal non-zero partial isometries in 92. Then 

= " = X~ k VkVk SO t r (B *B )  has m non-zero putting B El kVk, we have B * B  m 2 , 

elements and thus m =< n. Hence given /', there is a maximum number of 

mutually orthogonal non-zero partial isometries in 92/whose sum is Wj. Let V be 

one of these. Obviously, V is not a sum of two mutually orthogonal non-zero 

partial isometries in 9/. To prove (1), it suffices to show that V is a minimal 

element of 92. Put ~ = V'92 V* V and let F = V* V. Then F E ~3, ~3 contains the 

adjoint and all powers of each of its elements, and r(~)_-< r(92). Moreover,  it is 

easily verified that F is not a sum of two mutually orthogonal non-zero 

projections in ~ .  Let C U ~3 with C* = C. Then by the spectral theorem, there 

exist non-zero real numbers c , . .  ",ck and mutually orthogonal projections 
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F1, '-  ", Fk in ~ such that C = E~ qFj. For each ], FjF = FFj = Fj, which implies 

that Fj and F - F /are  mutually orthogonai projections in ~3 and thereofre Fj = 0 

or Fj = F. Thus C E CF, and since ~ is adjoint closed, this relation holds for all 

C E ~ .  It is easy to see that this implies that V is a minimal element of 92. 

E l a k V k V k  and P = E l a k V k V k ,  so Suppose (1) holds. Then A * A  = ,, 2 . ,, . 

a ~ , ' . . , a ~  are the non-zero elements of o ' ( A * A )  and a l , ' " , a m  are the 

non-zero eigenvalues of P. Hence if r is the maximum number of mutually 

orthogonal non-zero minimal partial isometries in 92, then n _-< r. Thus Corollary 

5 holds since r =< n by what we have already shown. Corollary 6 follows from 

Corollary 5 since a minimal element of 91 + ~ lies in either 92 or ~ .  

We remark that it follows from Proposition 4 and [18, p. 85] that a C*-algebra 

92 has finite rank if and only if 92 is finite dimensional. Indeed, if A is given by (1) 

and if B is given by the same expression with the ak's replaced by their 

reciprocals, then A B * A  = A,  so 92 is von Neumann regular when r(92) < 0o. 

PROPOSITION 7. The following are equivalent: 

(i) 92 is J*-isomorphic to a Hilbert space. 

(ii) Each operator in 91 is a scalar multiple of a partial isometry. 

(iii) 92 has rank 1. 

(iv) Each operator in 92 of norm 1 is a complex extreme point of the closed unit 

ball of  92. 

PROOF. Clearly (i) ::), (iv), and (iv) ::> (ii) by [4, theorem 11]. Also, (ii) <:~ (iii) 

by the spectral theorem and [3, p. 63]. Hence it suffices to show that (ii) ::> (i), 

and we may assume that dim92_-> 2. Let A and B be linearly independent 

operators in 92 and put f(A) = (A + AB)(A + AB)*(A + AB) for A ~ C. Assum- 

ing (ii) holds, there is a function ~p: C--* C satisfying 

(2) f(A) = r  + AB) 

for all h ~ C. It is easy to verify that there exist operators Co," " ,  C5 which can 

be expressed as linear combinations of the values of f such that 

f(X) = Co+ ACt + ~C2-~/~2C3-]-I/~ 12C4 91- *[/~ 12C5 

for all X E C. Hence there exist numbers a o , "  ", a5 and bo ,"  ", bs with Ck = 

akA + b~B for k = 0,. �9 5, and thus equating the coefficients of A and B in (2), 

we obtain 

r = ao+ alA + a23~+ a3A 2-1- a,,IA 12-1 - asAIA [2, 



Vol. 34, 1 9 7 9  SCHWART~PICK INEQUALITY 185 

Aq~(a) = bo+ b~A + bzs bxA:+ b41h 12+ bsA[A 12 

for all A E C. Clearly bo = 0 and q~ is continuous at A = 0. Hence dividing the last 

equality by A and letting A approach 0 through real and imaginary values, we 

obtain b2 = 0. Since C2 = AB*A,  this proves that for each A, B E ~ there is a 

complex number (A, B) with 

(3) A B * A  = (A, B)A.  

If A = 0, we define (A, B ) =  0. Obviously (A, B ) =  0 when B = 0. It is easy to 

verify that (A, B)  is well defined and conjugate-linear in B. Also, 

(A, B ) B * A  = B * ( A B * A ) =  (BA *B)*A = (B, A ) B * A ,  

and if B * A  = 0, then both A B * A  = 0 and (BA*B)*= 0, so ( A , B ) A  = 0 and 

(B, A ) B  * = 0. Hence (A, B) = (B, A)  for all A, B E 9~. Moreover, (A, A)  - 0 

and (A, A ) = II A I12 since (A *A )2 = (A, a ) a  *A. Thus 2[ is a Hilbert space and 

(3) shows that the given J*-structure of 9~ is identical with the Hilbert 

J*-structure of 9~. 

4. The algebraic inner product 

PROPOSmON 8. If  9~ has finite rank, there exists an inner product (., .) on 9~ 
such that 

(i) (A, A)  = ETa ~ for all A E 9~, where al, " ", a,, are the singular values of A, 
(ii) 11A II 2 =< (A, A)  _-< r(~)I1A II 2 ]:or all A E ~, 

(iii) ( L ( A ) , L ( B ) ) =  (A ,B)  for all A , B  ~ ,  whenever L: 9.1--+9~ is a J*- 
isomorphism, 

(iv) ( (A ,B)C,D)  = (C , (B ,A)D)  for all A ,B,  C,D ~ 9~, 
(v) (A, B)  = 0 whenever A and B are orthogonal elements o[ 9~. 

We call the inner product of Proposition 8 the algebraic inner product for 9~. 

PROOF. For each minimal partial isometry V in ~, define ~ev ~ ~* by 

V B * V =  #v(B)V. Note that Cv(W)= ~ew(V) when V and W are minimal 

elements of 92 since ( W V * W ) * V  = W*(VW*V) .  Given A E 2l, let a l , "  ", a,, 

and VI, . . . ,  Vm be as in (1) and define 

m 

( A , B ) =  ~ ake,,~(B) 

for B ~ 9~. Given B E ~, to see that (A ,B)  is well defined, let B = s be a 
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decomposition of B similar to that of A, and observe that 

m m t" t' m e 

~, akevk(B)= ~ ak • bjCvk(Wj)= ~ b~ ~ aks ~ b,s 
k = l  k = l  i = 1  j = l  k = t  j = l  

Thus (A,B) does not depend on the decomposition of A used and (A, B ) =  

(B, A).  Obviously (i) holds and thus (., .) is an inner product on 92. Clearly (ii) 

follows from (i), and (iii) follows from (i) and the fact that J*-isomorphisms take 

orthogonal elements to orthogonal elements and minimal elements to minimal 

elements. To prove (v), let A and B be orthogonal with the decompositions 

given above. Then 

0 = W*WjB*AV~Vk = akbsW*Vk, 

0 = VEV*AB*WjW* = akbjVkW*, 

so V~ and Wj are orthogonal for all k and j. Hence by (i), (A + AB, A + )tB) = 

( A , A ) + ( B , B )  whenever IAI = 1, so ( A , B ) =  0. 

Finally, to prove (iv), let A E 92 and t E R, and define L, = exp(2it(A,A)). 
Clearly, L, E ~(92) since (A, A ) E .5f(9.1), and L, (C) = 

exp (itAA*)C exp (itA*A) for all C E 92 since left multiplication by AA* 
commutes with right multiplication by A *A. Hence L, is a J*-isomorphism of 9.1 

onto itself. Given C, D E 92, (L,C, L,D) = (C, D) by (iii), and differentiating at 

t = 0, we have ((A, A)C, D) = (C, (A, A)D). Thus we obtain (iv) by substituting 

A + B for A and applying the conjugate linearity of (A, B) in B. (Note that our 

argument shows that (iii) implies (iv) for any sesquilinear form on 9./.) 

For example, let 92 be a Cartan factor with r(92)<oo. Then (A, B ) =  t rB*A 

when 92 is of type I or II, (A ,B)=~t rB*A  when 92 is of type III, and 

(A ,B) I=  A B * + B * A  when 92 is of type IV. The type I and II cases follow 

directly from the polarization formula, Proposition 4 and the fact that projec- 

tions of rank 1 have trace 1. If 92 is of type III and V = xy* - )7~* is a non-zero 

partial isometry in 92, then V V * V =  AV, where A =llxll211yll2-l(x,y)l 2, so 

tr v*  v = 2A = 211 v II 2 = 2. Hence the type III case follows from Proposition 4. If 

92 is of type IV, then there is an inner product (.,.) ' on 92 such that 

2 ( A , B ) ' I =  A B * + B * A  by [4]. Hence if V is a minimal element of 91, 

VB * V = ( VB * + B * V) V = 2(V, B )' V, so (A, B) = 2(A, B )' by definition. 

The algebraic inner product appears to be a new construction. (Compare [19, 

p. 261], [10, p. 99] and [22].) As an application, we obtain the following 
characterization of rank: 
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PROPOSITION 9. Suppose dim 9~ < oo. Then r(9.1) = n if and only if there exists 

maximal set of n mutually orthogonal non-zero minimal elements o]: 9~. 

PROOF. Let ~ be the set of extreme points of the closed unit ball of 9.l and 

suppose V1,"  ", V,, is a maximal set of mutually orthogonal non-zero minimal 

partial isometries in ~. Put V =  V ~ + - . - +  V,,. Then the J*-algebra 

(I - VV*)2I(I - V* V) has no non-zero minimal partial isometries so V E ~' by 

Proposition 4 and [4, theorem 11]. Also, (V, V) = m by part (i) of Proposition 8. 

Now the map W-->(W, W) is continuous on g~ and ~ is connected by [4, corol. 

9], so (W, W) = m for all W E g'. Thus Proposition 9 follows from Corollary 5. 

We define a J*-ideal in 21 to be a closed subspace ~ of 9A such that if 

A , B , C ~ 2 [ ,  then A B * C +  C B * A  ~ whenever B E ~  or C E ~ .  For exam- 

ple, the J*-ideals of a C*-algebra 9~ are precisely the closed ideals of ~ by 

theorems 4.8.14 and 4.9.2 of [19]. We say that a J*-ideal is simple if the only 

J*-ideals in ~ are {0} and ~. 

THEOREM 10. Let ~ have finite rank. Then there exists a unique set of 

mutually orthogonal non-zero simple J*-ideals ~1,'" ", ~ ,  in 9~ such that 

(4) ~ = ~ : , + " ' +  3.. 

Moreover, i]: f: 9~ x 9~ ~ C is a continuous sesquilinear form on 9~ satisfying 

(5) f ( (A,  B)C,  D)  = f(C, (B, A )D ) 

]:or all A,  B, C, D E 9~, then there exist complex numbers cl, �9 �9 ", c. such that 

(6) f(A, B) = ~ c~ (A~, Bk)k 
k = l  

for all A ,  B E 9~, where (., ")k is the algebraic inner product ]:or ~k and where 

A = A1 + " �9 + A .  and B = BI + ..  ' + B.  are decompositions given by (4). 

COROLLARY 11. If  dim 9.1 < 0% then each of the J*-ideals ~1," �9 ", ~ ,  above is 

J*-isomorphic to one of the Caftan factors of type I-IV. 

PROOF. Clearly the set 

F = {L E Z#(9~): L ( A , B )  = ( A , B ) L  for all A , B  E 9~} 

is a W*-algebra by part (iv) of Proposition 8. To see that F is commutative, let 

L, M ~ F and A, B E 9[. Then 

(L (A, A ))B = L ((B, A )A ) = (B, A ) L A  = (LA,  A )B, 
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so L ( A , A ) =  (LA, A) ,  and hence 

(A, A ) (LM - ML ) = L(A,  A )M - ML(A,  A ) = (LA, A )M - M(LA,  A ) = O. 

Therefore,  LM = ML since (A, A ) A  = 0 implies A = 0. 

Let E E F be a non-zero (self-adjoint) projection, put ~ = R g e E  and let 

A,B,  CEg~. If C ~ ,  

(A, B )C  = (A, B )EC = E((A, B)C)  E 

and if B E ~, 

(A, B )C = (EB, A )* C = (E(B, A ))* C = (A, B )EC = E ((A, B)C)  E 

by part (iv) of Proposition 8. Hence  ~ is a J*-ideal in 9A and clearly ~ contains a 

non-zero partial isometry by Proposition 4. Now if E, F ~ F are projections with 

EF=O, then R g e E  and R g e F  are orthogonal sets of operators;  for if 

A E R g e E  and B E RgeF,  then ( A , B ) B  ~ R g e E  A RgeF ,  so A and B are 

orthogonal  by [4, p. 18]. Hence  there can exist at most r(gJ) mutually orthogonal 

non-zero projections in F by Corollary 5. Let El , -  �9 ", E ,  be a maximal set of such 

projections and let ~1 , ' "  ", ~ ,  be their corresponding ranges. Obviously, E l +  

�9 -. + E ,  = / ,  so (4) holds. 

To show that each ~k is simple, let ~ be a J*-ideal  in ~k and let E be the 

projection of 9.[ onto ~. Given A, B E 9A, write A = A1 + A2 and B = B I +  B2, 

where A1, B 1 E R g e E k  and A2, B 2 E R g e ( I - E ~ ) .  Then ( A , B ) E C =  

(A1, B1)EC E ~ for all C E 9A, so ( A , B ) E  = E (A ,B )E .  Hence  E ~ F by part 

(iv) of Proposition 8. Since E and Ek - E are mutually orthogonal projections 

with sum Ek, it follows that E = 0 or E = Ek i.e., ~ = {0} or ~ = ~ .  

Suppose ~1, ' "  ", ~,,  are mutually orthogonal non-zero simple J*-ideals in 9~ 

such that 9.[ = ~1+ �9 �9 �9 + ~m. Let A be a non-zero element of a given ~ and 

write A = A1 + �9 �9 �9 + A,,, where A~ ~ ~ for l = 1, �9 �9 m. There  is an l such that 

A A  *A ~ O, so ~k fq ~ is a non-zero J*-ideal  in both ~k and ~x, and therefore, 

~k = ~ A ~ = ~t. Conversely, by symmetry,  every ~ is an ~k. Thus the two 

sets of ideals agree. 

To prove (6), note that by the Riesz representat ion theorem, there is an 

L E ~f(gJ) with f (A,  B)  = (A, LB)  for A, B E 9[. Given A, B, C, D E ~[, by 

hypothesis and part  (iv) of Proposition 8, 

(D, L((A, B)C))  = f(D, (A, B)C)  = f((B, A )D, C) 

= ((B, A )D, LC) = (D, (A, B)LC),  
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so L ~ F. Now if E ~ F is a projection then EkE and Ek(I  - E)  are mutually 

orthogonal projections in F whose sum is Ek, so EkE = 0 or Ek ( I -  E )  = 0 for 

each k = 1 , . . . ,  n. Hence E is in the span of E l , "  ",E,. Therefore,  by the 

spectral theorem, L is in the span of E l , "  ", E ,  and (6) follows. 

To prove Corollary 11, note that by [4, theorem 6], the open unit bali 9 of ~k 

is a bounded symmetric domain which is not holomorphically equivalent to a 

product of balls. Since each of the Cartan domains is holomorphically equivalent 

to a ball by [21, p. 286], it follows from a celebrated theorem of E. Cartan [1] that 

9 is holomorphically equivalent to a Cartan domain and this domain is not 

exceptional by [14]. Hence @ is holomorphically equivalent to the open unit ball 

of one of the Cartan factors 93 of types I - IV and therefore ~k is J*-isomorphic to 

93 by [4, corol. 4]. 

Clearly Corollary 11 improves theorem 7 of [4]. (To correct the proof given 

there, note that by induction one can assume that 93 is not J*-isomorphic to a 

product of two J*-algebras. Hence 93 is J*-isomorphic to one of the Cartan 

factors of type I - IV by our argument for Corollary 11.) 

5. The algebraic metric 

Let 9 be a bounded domain in a normed linear space X. We call an upper 

semicontinuous function a : 9 • X ~ R an infinitesimal Hermitian metric on 9 

if v ~ a(x,  v) is a Hilbert norm on X for each x E 9.  We say that a is invariant 
if 

ot(h(x), Oh(x )v )  = a(x, v) 

for all biholomorphic functions h : 9 ~ 9 and all x E 9,  v E X. It follows from 

[5, lemma 1] that the integrated form p of a is a pseudometric on 9 in which 

every biholomorphic mapping of 9 is an isometry. For example, if X is finite 

dimensional, the Bergman metric/3 for 9 is an invariant infinitesimal Hermitian 

metric on 9 by [2, theorem 5.2]. 

To give another example, let 93 be a J*-algebra of finite rank, let I1" 112 be the 

Hilbert norm given by the algebraic inner product of 93, and define 

a (B, A ) = II (I - BB  *)-~A (I - B *B)-1112 

for B ~ 930 and A E 93. Clearly a is an infinitesimal Hermitian metric on 930. We 

shall see shortly that a is invariant. We call a the infinitesimal algebraic metric 

for 930 and we call its integrated form p the algebraic metric for 930. 

Let 93 be any J*-algebra. It follows from [5, prob. 8] that the infinitesimal 
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CRF-metric ac on 920 is given by 

at(B, A )  = II (I - BB*)-~A(I  - B * B  )-~II 

for B E 9lo and A ~ 9~ and it follows from [5, prob. 6] that the integrated form pc 

of ac is given by 

Pc (B, C) = tanh-lll T-B (C)II 

for B, C E 920. Clearly by part (ii) of Proposition 8, if 91 has finite rank, then 

(7) 

and hence 

(8) 

ac =< a =< X/r(~) ac 

pc <= p <= VT( ) pc. 

Thus the p and norm topologies for 9~0 are equivalent. 

THEOREM 12 (Schwarz-Pick inequality). Let a and ac denote the infinitesimal 

algebraic and CRF-metrics, and let p and pc be their integrated forms, respectively. 
Suppose ~ has ]inite rank rand let h : 92o--* fSo be a holomorphic ]:unction. Then 

a ( h ( B ) , D h ( B ) A  ) <= X/-rac(B,A ), 

p(h (B ), h ( C)) < - V'r pc(B, C) 

]:or all A E 92 and B, C E 920. I f  h is biholomorphic, then 92 also has rank r and 

a (h (B) ,  D h ( B ) A  ) = a(B, A ), 

p(h(B) ,  h(C)) = p(B, C) 

for all A ~ 92 and B, C E 920. 

PROOF. The first two inequalities follow immediately from (7) and (8) and the 

corresponding Schwarz-Pick inequalities for the CRF case [5, prob. 3]. Alter- 
- -1  O nately, let B E 920 define ha = T,(m h o TB and put L = Dha(0). By the chain 

rule, 

DT~B)(h (B)) [Dh ( B ) A  ] = L (DT~I(B)A ). 

By the Cauchy estimates, II L II --< 1, so II L A  I1~ - rll AI[ 2 for  A E 92 by part (ii) of 
Proposition 8. If h is biholomorphic, then L is a J*-isomorphism by theorems 1 
and 4 of [4], so II L A  I]2, = II A 1[,2 for all A E 2[ by part (iii) of Proposition 8. Thus 
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the theorem follows from [5, lemma 1]. 

Our next result shows that the infinitesimal algebraic metric is the unique 

invariant infinitesimal Hermitian metric on 920 for which the constant in the 

Schwarz-Pick inequality is a minimum. 

THEOREM 13. I f  there is an invariant infinitesimal Hermitian metric a on 920 

and a number M satisfying 

(9) a ( h ( B  ), D h ( B  )A ) <= M s ( B ,  A )  

for all holomorphic functions h: 92o---~92o and all A ~ 92 and B ~ 920, then 
M 2 => r(92). I f  M 2 = r(92) or if 92 is simple, then a is a positive multiple of  the 

infinitesimal algebraic metric for 920. Conversely, if o~ is a positive multiple of the 
infinitesimal algebraic metric for 920, then (9) holds with M 2 = r(92). 

COROLLARY 14. The infinitesimal CRF-metric for 920 is Hermitian if  and only 
if 92 is J*-isomorphic to a Hilbert space. 

In particular, since the infinitesimal Bergman metric/3 is not a multiple of the 

infinitesimal algebraic metric for most bounded symmetric domains, inequality 

(9) does not hold with a =/3 and M 2= r(92), contrary to widely quoted 

assertions of Look [13, theorem B] and Kor~nyi [11]. 

EXAMPLE. Let 92 be the J*-algebra of all matrices 

where z,, z2, z3 E C. Then r(92) = 2 and 

0 z033 
Z2 

920 = {A E 92: IZll < 1, 1z212+ Iz312< 1}. 

Let a and /3 be the infinitesimal algebraic and Bergman metrics for 920, 

respectively, and define a linear map L:  92o---~ 92o by 

0 0] [o 0 00] 
Z2 Z3 Zl 

Then 

~(O,A )2= lz,12+ lz212+ lz31 ~, 

/3(0, A )  2= 2lzar  + 3(I z212 + [z312) 

for A E 9.1o, and/3(0,  L ( A ) )  2= (~)/3(0, A )  2 when 



192 L.A. HARRIS Israel J. Math. 

Io, ~ A = 0 ~ 960. 

But ~ > r(92), so one obtains a better Schwarz-Pick inequality with a than with/3. 

PROOF OF THEOREM 13 AND COROLLARY 14. The last part of Theorem 13 

follows from Theorem 12 and (7). Suppose r(92)< oo and let r,~..-, r, be the 

respective ranks of the simple J*-ideals ~1," �9 ", ~ ,  of Theorem 10. By Corollary 

5, for each k, there exists a set of rk mutually orthogonal minimal partial 

isometries in ~k. Let V be the sum of these partial isometries over all k. Let f be 

the inner product such that a(0, A)  2= f ( A , A )  for A E 92, and note that f 

satisfies (5) by hypothesis and the remark at the end of the proof of Proposition 

8. Choose p so that cp = min{c,,.  �9 c,}, where c~, . . . ,  c, are as in (6), choose a 

minimal non-zero partial isometry W in ~,, and define L ( A ) =  ~r for 

A E 92. Then L(92o)_C 920, so f (LW, LW)  <- _ M2f(W, W) by hypothesis. Since 

f (W, W) = cp, L W  = V and f (V,  V) = ETc~r~, we have 

1 rk (Ck~>~rk  M2> ~-- r (92) .  

If M 2 = r(92), then ck = cp for k = 1 , . - . ,  n, so f /c,  is the algebraic inner product 

for 92 by (6) and part (v) of Proposition 8. This obviously holds also when 92 is 

simple. Since a is invariant, it follows that a/cp is the infinitesimal algebraic 

metric for 92. 
To prove that r(92)< ~, let f be as before and observe that (5) still holds. By 

the upper semi-continuity of ct and the open mapping theorem, there exist 

positive numbers m and M such that m II A II --< ~ (0, A)  _-< Mll A II for all A ~ 92. 

Given A E 92, if ~ ( A * A )  has n distinct elements, there exist continuous real 

functions ~1,'" ", ~. defined on the real line such that ~ (A *A) ~ 0 and ~k~j = 0 

for k ~ j .  Put Ak =A~pk(A*A) and note that A ~ , . . . , A ,  are orthogonal 

elements of 92. Clearly, Ak = ~k((A,A))A and ~k((A,A)) is self-adjoint with 

respect to f since (A, A)  is, so 

f(Ak, A,) = f(A, A~pk (A *A )~  (A *A )) = 0 

for k ~ j. Without loss of generality we may assume that [I At  II = 1 for each k. 

Then 

m2n <= f(Aa, A~)+ .. .+ f ( A , , A , )  = a ( 0 , A , + . . . +  A,)z---M 2 

Hence r(92) _-< (M/m)2. 
To deduce Corollary 14, suppose a, is Hermitian. Then a~ is invariant and (9) 
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holds with a = ac and M = 1 by [5, prop. 3]. Hence r(91) = 1 by Theorem 13 and 

therefore 91 is J*-isomorphic to a Hilbert space by Proposition 7. The converse is 

immediate from (7). 

It is easy to see from the arguments for the previous two theorems that a is an 

invariant infinitesimal Hermitian metric on 91o if and only if 91 has finite rank and 

a ( B ,  A )  = II (1 - B B  * ) -~A (I  - B *B)-�89 

for all B ~ 91o and A E 91, where H" II1 is the norm on 91 induced by a function f 

satisfying (6) where all the ck's are positive and where two ck's are equal when 

the corresponding ~k's are J*-isomorphic. 

From now on, suppose that dim 91 < oo. (Note that by Corollary 11, the open 

unit balls of the finite dimensional J*-algebras are just the classical bounded 

symmetric domains, i.e., finite products of Cartan domains of type I-IV.) 

PROPOSITION 15. Let [3 be the infinitesimal Bergman metric for 91o, let d be its 
integrated form, and let e be the rank of 91o as a Hermitian symmetric space. Let 

~ , . . - , 5 ,  be the simple ideals in the decomposition (4) of 91, and define. 
Mk = n + m ,  n + l , 2 ( n - 1 )  or n when 

III(n) or IV(n) with n > 2, respectively. 

(10) 

(11) 

~k is J*-isomorphic to I(m, n), II(n), 

Then a given one of the inequalities 

/3(h (B ), D h ( B  )A ) <-_ "X/-~/3(B, A ), 

d (h(B) ,  h(C)) <- k /~d(B ,  C) 

holds for all holomorphic functions h : 91o---> 91o and all A ~ 91 and B, C E 91o if 
and only if the values of M~ agree for all k. Moreover, ~e = r(91) and 

(12) /3(0, A )  2 = 2tr (A, A )  

for all A E 91. 

Define tanh-lB = E o B ( B * B ) ' / ( 2 n  + 1) for B E 91o. Note that if B = E?bkV~ 
is the decomposition of Proposition 4, then 

(13) tanh-lB = ~ (tanh-lbk)Vk. 
k = l  

PROPOSITION 16. Let a be an invariant infinitesimal Hermitian metric on 91o 

and let p be its integrated form. Then a is K?ihlerian, p is a C~-metric with 
derivative a and 
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(14) p(B, C) = a(O, tanh-lT_a(C)) 

for all B, C E 920. If a is the infinitesimal algebraic metric, then 

(15) p(B, C) 2 = ~ (tanh-ldk) 2, 
k = l  

where d~,. . . ,  d, are the singular values o[ T-B(C). 

PROOF OF PROPOSITIONS 15 AND 16. By Corollary 11, the numbers Mk are well 

defined and # = r(92) by [6, p. 354], Corollary 6 and the discussion preceding 

Proposition 4. Let a be the infinitesimal algebraic metric for 92o, and let 

a~ , . . . ,  a ,  and/31, '" ",/3, be the infinitesimal algebraic and Bergman metrics for 

the open unit balls of ~ , .  �9 ~. ,  respectively. Comparing the expressions for the 

algebraic inner product computed before Proposition 9 with those for/3 given in 

[16], we see that for each k, 

(16) a ~ = pk/3 ~, 

where pk = 1/Mk. Hence by part (v) of Proposition 8, 

(0, A)2 = ~ pk/3k (0, Ak)2 

for all A E 92. (Here and in the sequel, we write Ak and Bk for the k-th 

coordinate of the respective decompositions of A and B given by (4).) On the 

other hand, 

(17) fl(0, A)  2= ~ /3k(0, Ak) 2 

for all A E 92 by [2, theorem 5.4]. Hence /3  is a positive multiple c of t~ if and 

only if Mk = c 2 for all k. This together with Theorem 13 proves Proposition 15 

for (10). Note that (10) and (11) are equivalent by Proposition 16 and [5, prob. 

7b]. 

To prove (12), define [ ( A , B ) = 2 t r ( A , B )  for A , B ~ 9 2 .  If L:  92--'-92 is a 

J*-isomorphism, then f(LA, LB) = f(A, B) since L(A,  B)L  -1 = (LA, LB), so [ 

satisfies (5) by the remark at the end of the proof of Proposition 8. Hence by 

Theorem 10 and (17), it suffices to verify that (12) holds for some non-zero 

element V of 92 when 91 is a Cartan factor. This verification is trivial when 92 is of 

types II, IV and III(n) with n even since we may take V to be unitary, and in the 

remaining cases we may take V to be a non-zero minimal element of 92. 

Now let a be an invariant infinitesimal Hermitian metric on 920. Then as in the 
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proof of Theorem 13, there are positive numbers c~, . . . ,  c, with 

(18) a (0, A)2 = ~ Ckak (0, Ak)2 
k = l  

for all A ~ 9/. Let K~, . . . ,  K,  be the Bergman kernel functions for the open unit 

balls of 3~ , . . . ,  3, .  Since for each k, log Kk gives rise to a Kiihler potential 

function for /3k, it follows that l o g o  gives rise in the same way to a Kiihler 

potential function for a, where 

O(A, B)  = K~(A,,  B, )  q . . . .  K. (A., B. )  q. 

and qk = ckpk for all k. Hence a is K/ihlerian. 

To prove (14), let E t , . . . , E ,  be the projections onto 3 ~ , . . . , 3 ,  and let 

p t , " ' , p ,  be the algebraic metrics on the open unit balls of 3 1 , . . . , 3 , ,  

respectively. Given B E g0, let y be a curve in 9/o with piecewise continuous 

derivative and suppose y(0) = 0 and y(1) = B. Put yk = Ek o y for each k. Then 

[I - y(t)y(t)*]-�89 - y (t)*y (t)] -�89 

= ~ [I - yk(t)yk(t)*]-~y~(t)[I -- yk(t)*yk(t)]  -�89 
k = l  

SO 

a(y(t) ,  y'(t)) 2= ~ Ckak('gk(t), y[,(t)) 2 
k = l  

for all 0-< t _-< 1 by (18). Hence by Minkowski's inequality, 

Lo( y-- r SkY. 
k - - I  k ~ l  

Now for each k, let Bk = X~,btV~ be the decomposition of Proposition 4 and let yk 

be the curve yk( t )=  E~b~(t)Vt, where b~(t)= tanh (t tanh-lbz) for l = 1 , . . . ,  nk. 

Then yk is a curve in the open unit ball ~ of 3k and 

n k 

[I - yk(t)yk(t)*l-Lg'k(t)[1 -- yk(t)*yk(t)] -~ = ~', (tanh-'b,) Vt 
I - 1  

for 0 _-< t < 1. By (16) and [16, p. 19-20], yk is a curve in ~ connecting 0 to Bk of 

shortest length with respect to ak, so 

n k 

OR (0, Bk )2 = L.~ (yk)2 = E ( tanh-1 b,)2 = ak (0, tanh-lBk )2. 
I - 1  
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Let 3' = 3 ' 1 + " "  + 3',. Clearly 31 is a curve in 920 with 3'(0)= 0 and 3'(1)= B. 

Applying (18) and the fact that a~(3'~(t), 3''k(t)) is constant in t, we have 

La(3') 2= ~ CkL~,(3'k) 2= ~ ckak(O, tanh- 'Bk)2=a(O,  tanh- lB)  2 
k = l  k = 1  

since (tanh-lB)k = tanh-lBk for all k. Thus y is a curve in 920 connecting 0 to B 

of shortest length with respect to a and p ( 0 , B ) =  a(0 , tanh- lB) .  Hence (14) 

follows since biholomorphic mappings of 92o are p-isometries and (15) then 

follows from (13). 

To show that p is a C~-metric with derivative a (see [5]), define a norm I[ II1 

on 92 by [[A[[ I=a(O,A)  and note that there is a number M satisfying 

[[AI[I_-<MI[A[[ for all A E 9 2 .  Given numbers r and s with 0 < r < l  and 

0 < s < 1 - r, let A, B E 92 satisfy [1B [[ < r and [[ A [[ < s. Put 

C = T-B (B + A ) ,  D = (I  - B B  *)-a=A (I - B *B)-~, 

R = (I  - B B * ) - ~ A ( I  - B * B  - B * A ) - I B * A ( I  - B*B)-~,  

and observe that C = D + R. By (14), 

[p (B + A, B) - ct (B, A )1 = III tanh-lC Ill - II D II11 ~ II tanh-lC - D Ill. 

Now II t a n h - ' C  - C 11 =< tanh-'[[ C II-II C II ~ II C 112/(1 -II C II), and there exist num- 
bers K1, K2 and p depending only on r and s such that IIR II--< KIlI A II 2, 

II c II-  p < 1 and II c II -< K=II a II. Hence 

[ [ tanh- lC-Dl l<=l l tanh- lC-Cl l+ l lR l [<= K I +  [[All 2. 

Thus there is a number O depending inly on r and s such that 

[p(n +a,n)-a(n,a)[<= o l l a  II =. 

This completes the proof. 

Note that the triangle inequality for the algebraic metric (i.e., p ( B , C ) =  < 

p(B, O ) +  p(O, C)) is a rather subtle inequality between singular values. 

We conjecture that Proposition 9, Corollary 11 and Proposition 16 (excluding 

the assertion that a is K/ihlerian) hold without the assumption that dim 92 < oo 

and that the representation (1) is unique up to order of terms. 
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